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PRACTICAL TOTAL SYNTHESIS OF A NATURALLY OCCURRING THIELOCIN

Abstract :

Yves Génisson and Robert N. Young*

Merck Frosst Centre for Therapeutic Research,
P.O. Box 1005, Pointe Claire-Dorval,
Quebec, CANADA HOR 4P§

VIA THE REGIOSELECTIVE ARYLATION OF A CYCLIC BORONATE

The first total synthesis of thielocin B (2 ) has been achieved . Lewis acid-catalyzed arylation of the readily

available cyclic boronate 8 provided the central portion of the molecule in a regiocontrolled manner. The desired natural
compound 2 was then obtained in 7 steps and 31% yield from the intermediate 5.

We have recently described the first total synthesis of thielocin A1f (1) (Figure 1) showing unique inhibitory

activities towards secretory phospholipase As.!

We now wish to report the first total synthesis of another naturally

occuring thielocin, termed thielocin B (2), isolated from the culture liquors of the same Thielavia terricola

ascomycetes.?

Thielocin B (2) (Figure 1) and 1 possess in common the highly substituted phenolic esters characteristic of the
depsides. However, 2 lacks the hydroxy diketone moiety (partially masked as an hemiketal) of 1 and could therefore
be considered as a reduced analog of thielocin A1 (1) .
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We first focused our studies on an efficient approach to the central portion of the target molecule 2. A synthesis
of related methylene bridged diaromatic structures has been described where a benzylic cation derived by acid-
catalyzed decomposition of the corresponding acetate was trapped with a dihydroxybenzene counterpart.3 Application
of this procedure (PTSA, dioxane, reflux) to an equimolar mixture of methyl orsellinate 34 (Figure 2) and benzylic
alcohol 43 yielded a mixture of the two possible regioisomers § and 6 (50%) along with the diadduct 7 (10%).6 'H
NMR analysis allowed us to identify the major regioisomer (70/30 ratio) as the desired product 5. These modest
preliminary results as well as the low availability of the alcohol 45 prompted us to develop a more efficient route.

Figure 2

Cyclic boronate 8 (Scheme 1) appeared to be the precursor of choice for the required arylation. Preparation and
reactivity of similar species towards various nucleophiles has been well studied by Cheuk K. Lau and collaborators.?
In particular, Lewis acid-catalyzed arylation by a phenol has been described. Key intermediate 8 was obtained as a
stable solid in 90% yield from the readily available orsellinate 9* (PhB(OH);, (CHO)p, EtCOH, toluene, reflux). We
then investigated the coupling reaction with phenol 3. Optimization of the experimental conditions showed that
treatment of cyclic boronate 8 with three equivalents of 38 (2.2 equiv. of BF3:Et;0, CHCl3, -10 ©C) yielded the desired
regioisomer 5 (93/7 ratio) with 77% isolated yield.9
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Reagents and conditions: a) PhB(OH),, (CHO),, E1CO,H, toluene, reflux, 1h, 90% b) 3, BF;*Et,0, CHCl,, -10 °C, 15h, 77% c)
TCE= 2,2,2-trichloroethyl, 4 steps and 49% overall yield from 9: see ref. 1
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Having in hand a direct and efficient access to the central portion of the desired thielocin B (2) we further
elaborated the polyphenolic side chains. After perbenzylation (BnBr, K2CO3, acetone, reflux), the protected diester 10
(78%) (Scheme 2) was hydrolyzed (KOH, DMSO, 90 °C)10 to the corresponding dicarboxylic acid 11 (79%). We then
formed the phenolic ester bonds in a sequential manner: although less convergent, this approach presented the double
advantage of 1) avoiding the preparation of the otherwise required phenolic dimer!! and 2) providing access to
potentially interesting simplified analogs of 2. Bis-esterification of 11 with appropriately protected phenolic monomer
1212 (TFAA, toluene)!? afforded the tetrameric derivative 13 (92%). Subsequent hydrolysis of the two 2,2,2-
trichloroethyl (TCE) esters (Cd, DMF/AcOH)!4 followed by bis-esterification of the resulting dicarboxylic acid 14
(94%) with 12 (TFAA, toluene) gave protected thielocin 15 (80%). Due to their potential sensitivity to
hydrogenation!5 the TCE esters were removed first. Thus, hexameric dicarboxylic acid 16 (85%) was obtained from
15 (Cd, DMF/AcOH) and final hydrogenolysis of the benzyl ethers (Pd/C 10%, Ha, AcOH) provided title compound 2
(85%). Thielocin B (2), which gave physical and spectral data consistant with the published data,!¢ was thus obtained

in nine steps and 21% overall yield from the orsellinate precursor 9.
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Reagents and conditions: a) BnBr, K,CO,, acetone, reflux, 4h, 78% b) KOH, DMSO, 90 °C, 8h, 79% c) 12, TFAA, twluene, 25
°C, 2h, 92% d) Cd, DMF/ACcOH, 25 °C,, 1h, 94% e) 12, TFAA, toluene, 25 °C, 2h, 80% f) Cd, DMF/AcOH, 25 °C, 1h, 85% g)
Pd/C 10%, H,, atm. pressure, AcOH, 25 °C, 4h, 85%
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